从事的科研工作情况(按时间倒序)
A 近五年的项目 
 
  
   | 序号 | 项目名称 | 项目来源 | 起止时间 | 项目单位 | 项目 负责人 | 经费(万元) | 本人任务 及排名 | 
  
   | 1 | 界面对高温辐照下低活化马氏体钢强度的影响研究 | 国家基金委 | 2018-2021 | 国家自然科学 基金委 | 张弛 | 60万元 | 负责人,第一 | 
  
   | 2 | 先进超超临界锅炉耐热材料基础研究 | 重点研发计划 | 2017-2021 | 钢铁研究总院 | 刘正东 | 272万元 (申请人承担经费68万) | 负责人,第二 | 
  
   | 3 | 基于量子力学等的环境适应性高强钢的合金设计(1) | 企事业单位委托 | 2016-2020 | 钢铁研究总院 | 张弛 | 25万元 | 负责人,第一 | 
  
   | 4 | 材料基因组模拟 技术咨询 | 企事业单位委托 | 2016-2018 | 钢铁研究总院 | 张弛 | 10万元 | 负责人,第一 | 
  
   | 5 | 基于液态金属脆化的材料毁伤研究 | 清华自主科研 项目 | 2015-2016 | 威廉希尔williamhill官方网站 | 张弛 | 50万 | 负责人,第一 | 
  
   | 6 | 中子辐照对低活化钢的微结构及性能影响的模拟研究 | ITER计划专项 | 2015-2019 | 中华人民共和国科学科技部 | 赵纪军 | 364万 (申请人承担经费162万) | 共同承担 第二 | 
  
   | 7 | 高速重载条件下轮轨材料表层组织及性能演化规律研究 | 国家973项目 | 2015-2019 | 中华人民共和国科学科技部 | 赵秀娟 | 310万 (申请人承担经费100万) | 共同承担 第二 | 
  
   | 8 | 高强钢中氢分析的合作研究 | 威廉希尔williamhill官方网站国际科技合作项目 | 2015-2016 | Kobe Steel, Ltd.(日本神户制钢) | 张弛 | 15万元 | 负责人,第一 | 
 
 
B 另按院系改革方案需提供的项目 
 
  
   | 序号 | 项目名称 | 项目来源 | 起止时间 | 项目单位 | 项目 负责人 | 经费(万元) | 本人任务 及排名 | 
  
   | 1 | ITER计划人才专项:核聚变堆关键材料的辐照损伤机理的基础研究 | ITER计划专项人才课题 | 2011-2014 | 中华人民共和国科学科技部 | 张弛 | 285万元 | 负责人,第一 | 
  
   | 2 | 高温强磁场服役下低活马氏体钢中析出相变形为研究 | 国家自然 科学基金 | 2011-2013 | 国家自然基金委 | 张弛 | 38万元 | 负责人,第一 | 
  
   | 3 | 高温强磁场服役条件对低活性铁素体/马氏体钢CLF-1微观组织及性能影响的研究 | 企事业单位 委托 | 2010-2012 | 核工业西南物理 研究院 | 张弛 | 53万元 | 负责人,第一 | 
  
   | 4 | 薄饼奥氏体-贝氏体/马氏体相变产物的微观结构表征与强韧化机理研究 | 北京钢铁 研究总院 | 2010-2014 | 北京钢铁研究院 | 张弛 | 40万元 | 负责人,第一 | 
  
   | 5 | 高强钢中氢分析的合作研究 | 国际合作 项目 | 2008-2013 | Kobe Steel, Ltd.(神户制钢) | 张弛 | 800万日元 | 负责人,第一 | 
 
 
近期论文(及专利)
[1]C.C. Wang, C. Zhang, Z.G. Yang, Effects of Ni on austenite stability and fracture toughness in high Co-Ni secondary hardening steel, Journal of Iron and Steel Research, International 24.2 (2017): 177-183.
[2]C.C. Wang, C. Zhang, J.J. Zhang, Z.G. Yang, W.B. Liu, Microstructure evolution and yield strength of CLAM steel in low irradiation condition, Materials Science and Engineering: A 682 (2017): 563-568.
[3]T.L. Achmad, W. Fu, H. Chen, C. Zhang, Z.G. Yang, Effects of alloying elements concentrations and temperatures on the stacking fault energies of Co-based alloys by computational thermodynamic approach and first-principles calculations, Journal of Alloys and Compounds, 694 (2017) 1265-1279.
[4]Q.-h. LI, C. ZHANG, C. Hu, C. Hao, Z.G. YANG, Microstructural Evolution of a Hypoeutectoid Pearlite Steel under Rolling-sliding Contact Loading, Journal of Iron and Steel Research, International, 23 (2016) 1054-1060.
[5]K. Tong, F. Ye, H. Che, M.K. Lei, S. Miao, C. Zhang, High-density stacking faults in a supersaturated nitrided layer on austenitic stainless steel, Journal of Applied Crystallography, 49 (2016) 1967-1971.
[6]K. Tong, F. Ye, M. Gao, M.K. Lei, C. Zhang, Interatomic potential for Fe–Cr–Ni–N system based on the second nearest-neighbor modified embedded-atom method, Molecular Simulation, 42 (2016) 1256-1262.
[7]C. Wang, C. Zhang, Z. Yang, J. Zhao, Multiscale Simulation of Yield Strength in Reduced-Activation Ferritic/Martensitic Steel, Nuclear Engineering and Technology, (2016).
[8]C. Wang, C. Zhang, J. Zhao, Z. Yang, W. Liu, Microstructure Evolution and Yield Strength of CLAM Steel in Low Irradiation Condition, Materials Science and Engineering: A, 682 (2017) 563-568.
[9]Z. Yang, W. Xu, Z. Yang, C. Zhang, H. Chen, S. van der Zwaag, Predicting the transition between upper and lower bainite via a Gibbs energy balance approach, Journal of Materials Science & Technology, (2016).
[10]C. Zhang, H. Chen, K. Zhu, C. Zhang, Z. Yang, Effect of Mo Addition on the Transformation Stasis Phenomenon During the Isothermal Formation of Bainitic Ferrite, Metallurgical and Materials Transactions A, 47 (2016) 5670-5674.
[11]T.L. Achmad, W. Fu, H. Chen, C. Zhang, Z. Yang, First-principles calculations of generalized-stacking-fault-energy of Co-based alloys, Computational Materials Science, 121(2016) 86-96.
[12]W.B. Liu, Y.Z. Ji, P.K. Tan, C. Zhang, C.H. He, Z.G. Yang, Microstructure evolution during helium irradiation and post-irradiation annealing in a nanostructured reduced activation steel, Journal of Nuclear Materials, 479(2016) 323-330.
[13]W.B. Liu, N. Wang, Y.Z. Ji, P.C. Song, C. Zhang, Z.G. Yang, L.Q. Chen, Effects of surface energy anisotropy on void evolution during irradiation: A phase-field model, Journal of Nuclear Materials, 479(2016) 316-322.
[14]Z.N. Yang, M. Enomoto, C. Zhang, Z.G. Yang, Transition between alloy–element partitioned and non-partitioned growth of austenite from a ferrite and cementite mixture in a high-carbon low-alloy steel, Philosophical Magazine Letters, 96(2016) 256-264.
[15]C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Microstructure analysis and yield strength simulation in high Co–Ni secondary hardening steel, Materials Science and Engineering: A, 669(2016) 312-317.
[16]C. Zhang, Z. Yang, M. Enomoto, H. Chen, Z. Yang, C. Zhang, Prediction of Ar 3 during Very Slow Cooling in Low Alloy Steels, Isij International, (2016).
[17]Z.N. Yang, W. Xu, Z.G. Yang, C. Zhang, S. van der Zwaag, A 2D analysis of the competition between the equiaxed ferritic and the bainitic morphology based on a Gibbs Energy Balance approach, Acta Materialia, 105(2016) 317-327.
[18]Z.N. Yang, Y. Xia, M. Enomoto, C. Zhang, Z.G. Yang, Effect of Alloying Element Partition in Pearlite on the Growth of Austenite in High-Carbon Low Alloy Steel, Metallurgical and Materials Transactions A, 47(2016) 1019-1027.
[19]H. Chen, C. Zhang, W.B. Liu, Q.H. Li, H. Chen, Z.G. Yang, Y.Q. Weng, Microstructure evolution of a hypereutectoid pearlite steel under rolling-sliding contact loading, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 655(2016) 50-59.
[20]H. Chen, Z.G. Yang, C. Zhang, K.Y. Zhu, S. van der Zwaag, On the transition between grain boundary ferrite and bainitic ferrite in Fe–C–Mo and Fe–C–Mn alloys: The bay formation explained, Acta Materialia, 104(2016) 62-71.
[21]C. Zhao, C. Zhang, W.Q. Cao, C.Y. Wang, Z.G. Yang, Y.Q. Weng, Variation of microstructure and mechanical properties of medium Mn steels with multiphase microstructure, Materials Science and Technology, (2016) 1-8.
[22]C. Zhao, C. Zhang, W.Q. Cao, Z.G. Yang, Variation in retained austenite content and mechanical properties of 0.2 C–7Mn steel after intercritical annealing, International Journal of Minerals, Metallurgy, and Materials, 23(2016) 161-167.
[23]W.B. Liu, Y.Z. Ji, P.K. Tan, H. Zang, C.H. He, D. Yun, C. Zhang, Z.G. Yang, Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review, Materials, 9(2016) 105.
[24]P.C. Song, W.B. Liu, C. Zhang, L. Liu, Z.G. Yang, Reversed Austenite Growth Behavior of a 13% Cr-5% Ni Stainless Steel during Intercritical Annealing, Isij International, 56(2016) 148-153.
[25]P.C. Song, Y.Z. Ji, L. Chen, W.B. Liu, C. Zhang, L.Q. Chen, Z.G. Yang, Phase-field simulation of austenite growth behavior: Insights into the austenite memory phenomenon, Computational Materials Science, 117(2016) 139-150.
授权发明专利
[1]张弛,王泽胤,陈升伟,夏志新,杨志刚,陈浩,一种晶界析出强化的奥氏体耐热钢及其制备方法,授权日期:2016.6.29,中国,专利号ZL201410158289.X
[2]张弛,柳文波,夏志新,杨志刚,低活化钢及其制备方法, 授权日期:2015.8.7,中国,专利号:2013103034876
[3]王茹鸣,张弛,杨志刚,张玉朵,殷鸽,用于钢铁磷化的组合物及其用途,授权日期:2014.04.09,中国,专利号:2012100961122
[4]杨志刚,张玉朵,兰昊,张弛, 热障涂层粘结层材料,授权日期:2013.01.1,中国,专利号:200910241297X
[5]杨志刚,张弛,陶鹏,一种改善低合金高强钢组织和性能的方法,授权日期:2009.05.27,中国,专利号:2007101779681